

BIOCHEMICAL CHANGES IN SQUASH LEAVES SPRAYED WITH SOME CHEMICALS FOR INDUCING RESISTANCE TO POWDERY MILDEW

Eisa, A. Nawal; El-Fiki, A.I.; Mohamed, F.G. and El-Habbak, M.H. Dept. Botany, Fac. Agric., Benha Univ.

ABSTRACT

Foliar sprays of nine abiotic agents namely; ascorbic acid, boric acid. calcium chloride, cobalt chloride, copper sulphate, manganese sulphate, oxalic acid, potassium di-hydrogen phosphate and salicylic acid, were tested to evaluate their efficacy to induce resistance against Sphaerotheca fuliginea, the causal of powdery mildew of squash (Cucurbita pepo L.) under glasshouse conditions. All tested foliar treatments, except CaCl2, were effective in inducing systemic protection against powdery mildew. However, they were less effective than penconazole which was equally effective as MnSO₄ at 20 mM where they caused a 100% systemic protection on the upper leaves. Among the tested agents, six of them significantly increased sugar content of leaves, while all of them decreased the total phenois compared to the control. Out of the tested agents, MnSO₄, salicylic acid, oxalic acid and boric acid enhanced the peroxidase activity. However, polyphenoloxidase activity was affected only by oxalic acid, MnSO4 and KH2PO4 where it was higher than the control. In addition, it was found that most of the tested compounds caused significant increase in the total soluble protein of the 4th leaf.

Key words: Sphaerotheca fuliginea, squash, control, induced resistance, phenols, sugars, peroxidase, polyphenol oxidase and proteins.

INTRODUCTION

Squash (Cucurbita pepo L.) is one of the important vegetable crops in Egypt, where it is considered one of the leading producing countries of squash in the world. It takes the fifth grade between them (FAOStat database, 2003).

Powdery mildew is a common disease of squash in most areas of the world and could be a consider the major production problem. Sphaerotheca fuliginea and Erysiphe cichoracearum are the two most commonly recorded fungi causing cucurbit powdery mildew. Recently, S. fuliginea is more common (McGrath, 1997).

Controlling powdery mildew through inducing systemic resistance (ISR) has been extensively studied during the last fifteen years to obtain systemic protection against powdery mildew by spraying the lower leaves of plants with solutions of chemical agents that they not themselves fungicides (Reuveni et al., 1995). The efficacy of various chemical inducers of systemic resistance against powdery mildew disease has been tested by many investigators. Among them, Frey and Carver (1998) used salicylic acid at a concentration of 15 mM on pea. Descalzo et al. (1990) used oxalic acid on cuember under simulated commercial greenhouse conditions. Also, Reuveni et al., (1995 and 1997) tested solutions of K₂HPO₄, KH₂PO₄, CuSO₄, MnCl₂ and boric acid on cuember. Gamil (1995) and Ahmed (2005) used foliar sprays of CoSO₄ and K₂HPO₄ on squash and cueumber plants to inducers of systemic resistance against powdery mildew.

Meena et al. (2001) found that foliar application of SA at a concentration of 1 mM on groundnut significantly reduced late leaf spot disease intensity, and observed an increase in phenolic content, one day after challenge inoculation with Cercosporidium personatum, in SA-treated leaves.

Gottstein and Kuć (1989) proved that systemic accumulation of defence-related enzyme peroxidase can be induced in leaves treatmed with chemicals for inducing resistance to diseases in cucumber. Okuno et al. (1991) showed that the SA treatment and localized infection with Pseudoperonospora cubensis induced several novel acid soluble proteins in the treated and the upper untreated leaves in correlation with induced resistance. Avdiushko et al. (1993); Gamil (1995); Mosa (1997) detected the high activities of peroxidase, polyphenol oxidase, lipoxygenase, chitinase and α-glucosidase in cucumber and squash leaves in the vicinity of lesions caused by dipotassium phosphate application. Orober et al. (1998) and Ahmed (2005) found an increase in the activities of peroxidase and polyphenoloxidase in all plant parts of cucumber treated with phosphate for the induction of systemic acquired resistance against powdery mildew.

This study aimed to examine the efficacy of certain chemical agents in inducing systemic protection against squash powdery mildew. Also, assaying some biochemical changes, which expressed the systemic acquired resistance resulting from treating squash leaves with these chemical agents.

MATERIALS AND METHODS

Sampling and propagules of mildew inoculum:

Heavily infected squash plants with powdery mildew, Sphaerotheca fuliginea (Schltdl.) Pollacci which collected during September, 2001 were used as a source of powdery mildew inoculum. Then, the collected spores were shaked gently over healthy squash plants two weeks age grown in glasshouse. The newly mildewed squash plants were used in this case as a source of powdery mildew propagules for further experiments.

Growing squash plants:

Pots (15 cm ϕ) filled with 2 kg clay soil were sown with squash seeds (cv. Eskandarani) at rate one seed per each pot, then, irrigated and left in the glasshouse until sprouting the seeds. Three pots were used for each treatment. The growing squash seedling was transferred to a separate part in the glasshouse and surrounded by squash plants heavily infected with powdery mildew.

Application of induced resistance chemicals:

Squash seedlings (14 days age) were sprayed onto the upper surface of the first two true leaves with one of the tested aqueous solutions 2 days before inoculation by conidia of the powdery mildew fungus (Strobel and Kuć, 1995). In this respect, salicylic acid (SA), ascorbic acid (AA), oxalic acid (OA), boric acid (BA), manganese sulphate (MnSO₄), cobalt chloride (CoCl₂), copper sulphate (CuSO₄), calcium chloride (CaCl₂.2H₂O) and potassium di-hydrogen phosphate (KH₂PO₄) were used as chemical inducers. Aqueous solutions of 5, 10 and 20mM were used for all, except KH₂PO₄ was used at 50, 100 and 200mM.

Control treatments were sprayed firstly with the powdery mildew fungicide, Topas-100 (10.0% penconazole 'w/v' [(R,S-1-(2-(2,4-dichlorophenyl) -Q pentyl)-1H-1,2,4-triazole]) at 25 ppm (the recommended dose 0.25ml/L) and secondly, sprayed with tap water only. Sprayed and inoculated squash plants were incubated on glasshouse benches until appearance of powdery mildew symptoms.

Inoculation:

Inoculation was accomplished by shaking diseased squash samples over plants at a height of about 30cm. Inoculated plants were incubated on glasshouse benches until disease assessment was undertaken. Inoculation was done 2 days after foliar application with resistance-inducers (Strobel and Kuć, 1995).

Disease assessment:

Fourteen days post inoculation, powdery mildew disease was evaluated by counting the number of mildew colonies on leaves surface with the naked eye.

Biochemical changes:

Samples for chemical analysis were taken 30 days after treatment from the fourth plant leaf of each treatment. Extraction from squash leaves were prepared as follows: A representative samples, 1 g of each, were cut into small portions and immediately plunged into 95% boiling ethanol for ten minutes to kill the tissues. The extraction was then resumed in a soxhlet apparatus by using 75% ethanol as an extractant until the percolate was colorless (8-10 hrs). The combined ethanolic extracts were filtered and evaporated to near dryness on a mild water bath, 60°C. The dried residue was redissolved in a known volume, 5 ml, of 50% iso-propanol and used for chemical analysis as follows:

Determination of sugar content:

Total and reducing sugars were determined spectrophotometrically with picric acid as described by Thomas and Dutcher (1924).

Determination of phenolic compounds:

Phenolic compounds were determined using the colourimetric method of analysis by Folin-Ciocalteu reagent described by **Bray and Thorpe** (1954).

Activities of peroxidase and polyphenol-oxidase:

The fifth leaf of treated and non-treated plants was harvested 30 days after treatment, by cutting them at the leaf base level. Leaf extract for assaying protein and enzyme activities was prepared from the harvested leaves according to **Tuzun** et al. (1989).

Peroxidase assay:

The activity of peroxidase enzyme was measured as described by **Chance and Maehly (1955)**. The obtained enzyme extract (0.3 ml) was added to 0.1 ml of 100 mM potassium phosphate buffer (pH 7.0), prepared by mixing 38.5ml of 100mM potassium phosphate monobasic (KH₂PO₄) and 61.5ml of 100mM potassium phosphate dibasic (K₂HPO₄); 0.32 ml of 5% pyrogallol; 0.16 ml of 0.5% hydrogen peroxide in sample cuvette and rest of distilled water (final volume of 3.0 ml). The initial rate increase in absorbance at 420 nm was regarded as an arbitrary unit of enzyme activity. Enzyme activity was expressed as Δ_{420} /min/g.

Polyphenol oxidase assay:

Polyphenoloxidase was assayed following the method of **Taneja and Sachar** (1974). The reaction mixture contained 2 ml of 1% catechol solution as substrate, 0.2 ml of enzyme extract and rest of 0.05 M sodium phosphate buffer pH 6.8 in a final volume of 4 ml. Enzyme activity was expressed as $\Delta 430$ /min/g.

Soluble protein assay:

Protein content was determined according to the method of **Bradford (1976)** using crystalline bovine serum albumin (BSA) as a standard. Five ml of the Bradford dye (reagent) were added to $100~\mu L$ of protein extract, vortexed and the absorbance was measured at 595 nm after 2 min as well as before one hour. Protein concentration was calculated as mg.g⁻¹ fresh weight from a standard curve of bovine serum albumin.

RESULTS AND DISCUSSION

1- Effect of the tested foliar treatments on powdery mildew infection:

Results in **Table** (1) indicate that, most of tested treatments induced systemic protection against the natural infection with powdery mildew and this was greatly varied on the three upper leaves that expanded after foliar application. In this respect, determining the

average numbers of colonies on the upper 3 leaves revealed that all tested foliar spray treatments were significantly effective in this respect compared with control plants that sprayed with water. Meanwhile, the fungicide Penconazole was the most effective followed by SA, OA, AA, CuSO₄, KH₂PO₄, BA, MnSO₄, CoCl₂ and CaCl₂, respectively. Only CaCl₂ had no clear significant effect in decreasing number of colonies compared with control treatment. These results are in agreement with Mosa (1997) who reported that the most effective treatments were K₂HPO₄ and K₃PO₄ showing both protective and curative effects against S. fuliginea infection.

The systemic fungicide Penconazole at 25 ppm provided complete protection as it reduced averages of number of mildewed colonies and disease severity by 100.0% on the upper leaves. Several investigators, in fact, proved the efficiency of systemic fungicides in controlling powdery mildew diseases (Reuveni et al., 1998). Also, Ahmed (2005) stated that, the induction of cucumber resistance to powdery mildew by phosphate salt (K₂HPO₄) significantly reduced the percentage of powdery mildew incidence and severity. The high reduction was induced by Topas-100 at concentration 50 cm³/100L and phosphate salt (K₂HPO₄) at concentration 100 mM.

2. Biochemical changes in the upper leaves:

2.1. Sugars and phenols contents:

Results presented in Table (2) indicate that all tested chemical substances as resistance inducer affected significantly sugars content. In this respect, copper sulphate, Penconazole, potassium dihydrogen phosphate, oxalic acid, manganese sulphate, calcium chloride and cobalt chloride increased the reducing sugars comparing to the control treatment. Meanwhile, boric acid, SA, and ascorbic acid decreased it compared with the control. Also, increasing concentration of tested substances increased consequently reducing sugars. As for interaction the same results proved that CuSO₄ used at 20 and 10mM induced the highest increase in the reducing sugars followed by Penconazole and OA at 20mM, while AA at 5 and 10mM, BA at 5mM, OA at 5mM, SA at 5 and 10mM decreased it. As for the content of non-reducing sugars, Penconazole, AA, CuSO4 and OA increased it compared with control case while, MnSO₄, BA, SA, CaCl₂, CoCl₂ and KH₂PO₄ decreased it comparing to the control treatment. With few exceptions, increasing tested concentration increased the non-reducing sugars also. The non-reducing sugars were significantly decreased by most tested treatments. The highest decrease was induced by KH2PO4 at 5 & 10mM. Concerning the total sugars, Penconazole, CuSO₄, OA, MnSO₄, KH₂PO₄, CaCl₂ and CoCl₂ increased it over control while AA, BA and SA decreased it compared with control treatment. The total sugars were increased, in general, by increasing concentration of the tested chemicals. The highest increase in the total sugars was induced by Penconazole fungicide.

Data in Table (3) indicate that, the free, conjugated and total phenols were affected significantly by the tested treatments. Compared with control, all tested chemical compounds, except SA, increased the free phenols. The highest increase in the free phenols was induced by Penconazol. The observed increase in the free phenols occurred mainly off the reduction in both total and conjugated phenols. All tested chemical compounds caused significant decrease in both conjugated and total phenols. Percentage of reduction particularly in total phenols was proportionally increased, in most cases, as the tested concentration increased.

As for the interaction between compound and concentration, the same data proved that free phenois content was increased significantly by most interactions. The highest increase was induced by the fungicide Penconazole at 25 ppm. On the contrary, the free

Table (1): Number of powdery mildew colonies on the upper three leaves as affected by the tested foliar spray treatments.

Conce	Concentration						Num	Number of powdery mildewed colonies	owder	y milde	wed co	lonies					
/	/		310	3 rd leaf			4 th leaf	eaf			5 th	leaf		no on	Ave the up	Average on the upper leaves	res
Chemical compound		5mM	10mM	5mM 10mM 20mM Mean	Mean	5mM	10mM	10mM 20mM Mean	Mean	5mM	10mM	10mM 20mM	Mean	7 MmS	10mM	5mM 10mM 20mM Mean	Mean
Ascorbic acid	acid	43.0	22.5	21,0	28.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14.3	7.5	7.0	9.6
Boric acid	ď	87.0	41.0	25.0	51.0	7.0	0.0	0.0	2.3	0.0	0.0	0.0	0.0	31.3	13.7	8.3	17.8
Calcium chloride	chloride	177.0	162.0	76.0	138.3	67.0	60.0	50.0	59.0	1.5	0.0	0.0	0.5	81.8	74.0	42.0	65.9
Cobalt chloride	ıloride	96.5	66.0	54.0	72.2	16.5	8.5	0.0	8.3	0.0	0.0	0.0	0.0	37.7	24.8	18.0	26.8
Copper sulfate	ulfate	0.88	30.0	28.0	30.3	1.0	0.5	0.0	0.5	0.0	0.0	0.0	0.0	11.3	10.2	9.3	10.3
Potassium								,		,	1	,	,		•		
dihydrogen phosphate*	* 5	53.5	30.0	11.5	31.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	17.8	10.0	ω ∞	10.6
Manganese sulphate	sulphate	85.0	80.0	0.0	55.0	4.0	2.5	0.0	2.2	0.0	0.0	0.0	0.0	29.7	27.5	0.0	19.1
Oxalic acid	id	22.5	18.0	8.5	16.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.5	6.0	2.8	5.4
Salicylic acid	acid	5.0	0.0	1.5	2.2	9.5	6.0	0.0	5.2	0.0	0.0	0.0	0.0	4.8	2.0	0.5	2.4
Penconazole (25ppm)	г	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control		180.0	180.0	180.0 180.0	180.0	68.0	68.0	68.0	68.0	1.5	1.5	1.5	1.50	83.2	83.2	83.2	83.2
Mean		71.14	57.23	36.86		15.73	13.23	10.73		0.23	0.14	0.14		29.0	23.5	15.9	
<u> </u>	Compound		6	6.76			2.	2.07			0.	0.11			1.83	33	
S.D. a 5%	Concentratio n		3	3.53			1.0	1.09			0.	0.06			0.96	8	
	Interaction		1:	11.70			3.615	15			0.18	18			3.18	8	
* Conce	Concentrations of KH2PO4 were 50, 100 & 200mM	f KH ₂ P()4 were	50, 100 &	200mM												

Table (2): Sugars contents in squash leaf-4 as affected by the tested foliar spray treatments.

Concentration	ıtration				S	igars co	ntents (1	ng/g fre	Sugars contents (mg/g fresh weight)	G G			
<u>/</u> -	/		Reducing sugars	g sugars		Z	Non-reducing sugars	ing suga	rs		Total	Total sugars	
Chemical compound	punodi	5mM	10mM	20mM	Mean	SmM	10m.M	20mM Mean	Mean	5mM	10mM	20mM Mean	Mean
Ascorbic acid		0.84	1.93	4.34	2.37	4.46	4.87	4,33	4.553	5.30	6.26	8.67	6.74
Boric acid		2.40	2.89	3.86	3.05	1.94	1.92	3.37	2.410	4.34	4.81	7.23	5.46
Calcium chloride	ride	5.78	6.26	7.23	6.42	1.93	1.93	4.	1.767	7.71	8.19	8.67	8.19
Cobalt chloride	de	4.82	6.74	7.71	6.42	1.44	0.97	0.89	1.100	6.26	7.71	8.60	7.52
Copper sulfate	e	8.67	12.08	13.98	11.58	4.82	2.37	1.92	3.037	13.49	14.45	15.90	14.61
Potassium dihydrogen phosphate*	เอธียม	7.23	8.19	8.67	8.03	0.48	0.48	1.93	0.963	7.71	8.67	10.60	8.99
Manganese sulphate	ohate	6.26	6.75	7.23	6.75	1.39	3.37	3.37	2.710	8.19	10.12	10.60	9.64
Oxalic acid		4.33	8.67	9.64	7.55	3.86	1.93	2.89	2.893	8.19	10.60	12.53	10.44
Salicylic acid		0.84	2.41	5.30	2.85	2.05	2.40	96.0	1.803	2.89	4.81	6.26	4.65
Penconazole (25ppm)	25ppm)	10.12	10.12	10.12	10.12	6.27	6.27	6.27	6.270	16.39	16.39	16.39	16.39
Control		4.34	4.34	4.34	4.34	2.88	2.88	2.88	2.880	7.22	7.22	7.22	7.22
Mean		5.06	6.40	7.49		2.87	2.67	2.75		7.97	9.02	10.24	
	Compound		0.38	38			0.	0.16			0.35	35	
LSD at 5%	Concentration		0.20	50			0.08	8(0.18	18	
	Interaction		9.0	0.6504			0.2680	580			0.6015	015	

* Concentrations of KH, PO, were 50, 100 & 200mM

phenols were significantly decreased by few interactions. Also, the total phenols were decreased significantly by all tested interactions compared with the control. Applying AA at 20mM caused the highest decrease in the total phenols while, CoCl₂ and OA used at 5mM caused the lowest significant decreases in the total phenols. The conjugated phenols content was affected similarly as in the total phenols. The highest reduction was induced by MnSO₄ at 20mM. While, AA at 10mM induced the lowest decrease in the conjugated phenols.

It is well known that plant phenols, particularly the free phenols - which are toxic substances - play a significant role in controlling pathogenic microorganisms attacking variety of plants. Unlike situation in the non-induced plants, the plants induced by either biotic or abiotic inducers contained higher levels of sugars (Liu et al., 2000) and phenols (Meena et al., 2001). Ahmed (2005) found that, phosphate salt (K₂HPO₄) increased sugars and phenols content in cucumber leaves after treated to induce resistance against powdery mildew.

2.2. The activities of peroxidase and polyphenol oxidase enzymes:

Data in Table (4) showed that the peroxidase activity expressed as change in absorbance/ 5 min./g fresh weight was affected differently by the tested treatments. Most of tested chemical compounds caused significant increase in the peroxidase activity compared with control. Applying MnSO₄ induced the highest increase in peroxidase activity followed by SA, OA respectively. However, both CuSO₄ and CaCl₂ did not affect peroxidase activity compared with the control treatment. The peroxidase activity was increased, in general, as the concentration of the tested compound increased. Among all tested treatments, peroxidase activity was significantly increased by MnSO₄ at 20mM.

Concerning with activity of polyphenol oxidase enzyme, data in **Table (4)** declare that KH₂PO₄, OA and MnSO₄ caused significant increase in the PPO activity. However, Penconazole and CuSO₄ significantly decreased its activity. The other tested chemical compounds *i.e.* CaCl₂, AA, SA, BA and CoCl₂ did not affect PPO activity compared with control.

The highest significant increase in the PPO activity was induced by the middle and higher concentration compared with the low one. These results are in agreement with those finding by Gamil (1995) who stated that foliar spraying of squash plants with cobalt sulfate reduced peroxidase and polyphenol oxidase activity in detached squash leaves after inoculation. Potassium phosphate decreased polyphenol oxidase activity but increased peroxidase in detached leaves 48 h after inoculation. Orober et al. (1998) recorded that the foliar application of phosphate induced systemic acquired resistance (SAR) in cucumber against powdery mildew (Sphaerotheca fuliginea). As a further consequence of phosphate application, activities of typical defense-related enzymes like peroxidase and polyphenoloxidase increased in all parts of the induced plants. Similar increases in the oxidative enzymes activities were observed also by several investigators in the induced plants (Mosa, 1997; Reuveni et al., 1997; Orober et al., 1998; Mosa, 2002 and Ahmed, 2005).

2.3. The total soluble protein content:

Data in Table (4) indicate that, the soluble protein content in the 5th leaf of squash plants was responded differently against the tested treatments. Copper sulfate (CuSO₄), ascorbic acid (AA), cobalt chloride (CoCl₂), potassium di-hydrogen phosphate (KH₂PO₄), salicylic acid (SA), manganese sulfate (MnSO₄) and calcium chloride (CaCl₂) significantly increased the protein content. The obtained results could be supported by Mills and Wood

Table (3): Phenols contents in squash leaf-4 as affected by the tested foliar spray treatments.

Concer	Concentration				Ph	enols co	Phenols contents (mg/g fresh weight)	mg/g fre	sh weigh	ıt)			
/	/		Free phenols	henols		3	Conjugated phenols	d phenol	S		Total p	Total phenols	
Chemical compound	punoau	SmM	10mM	20mM	Mean	SmM	10mM	20mM	Mean	SmM	10mM	20mM	Mean
Ascorbic acid		12.8	4.0	2.6	6.47	8.0	21.0	3.4	10.80	20.8	25.0	6.0	17.27
Boric acid		11.4	0.5	7.7	6.53	12.8	18.8	5.0	12.20	24.2	19.3	12.7	18.73
Calcium chloride	ride	13.2	11.3	6.8	11.13	13.2	9.5	6.4	9.70	26.4	20.8	15.3	20.83
Cobalt chloride	de	17.7	13.9	9.2	13.60	11.4	13.8	12.9	12.70	29.1	27.7	22.1	26.30
Copper sulfate	te	18.8	5.1	5.4	9.77	4.6	5.3	2.7	4.20	23.4	10.4	8.1	13.97
Potassium dihydrogen	drogen	11.0	19.3	11.4	13.90	17.5	8.5	14.8	13.60	28.5	27.8	26.2	27.50
Manganese sulphate	ulphate	12.0	9.7	10.4	10.70	13.5	6.4	1.8	7.23	25.5	16.1	12.2	17.93
Oxalic acid		12.8	7.7	11.3	10.60	16.3	18.4	8.5	14.40	29.1	26.1	19.8	25.00
Salicylic acid		11.5	2.2	1.0	4.90	10.8	11.6	2.9	9.53	22.3	13.8	7.2	14,43
Penconazole (25ppm	(25ppm)	19.7	19.7	19.7	19.70	6.5	6.5	6.5	6.50	26.2	26.2	26.2	26.20
Control	7	5.4	5.4	5.4	5.40	25.3	25.3	25.3	25.30	30.7	30.7	30.7	30.70
Mean		13.30	8.982	8.455		12.72	13.191	8.50		26.02	22.17	22.17 16.95	
	Compound		0	0.53			0.62	52			0.69	69	
LSD at 5%	Concentration		0.	0.28			0.33	13			0.36	36	
	Interaction		0.9	0.914			1.081	81			1.1	1.194	

* Concentrations of KH1,PO, were 50, 100 & 200mM

Table (4): Activity of peroxidase and polyphenoloxidase enzymes* and protein content in the 5th leaf as affected by the tested foliar spray treatments.

Interaction	LSD at 5% Concentration	Compound	Mean	Control	Penconazole (25ppm)	Salicylic acid	Oxalic acid	Manganese sulphate	Potassium dihydrogen phosphate*	Copper sulfate	Cobalt chloride	Calcium chloride	Boric acid	Ascorbic acid	Chemical compound		Concentration			
			0.084	0.078	0.075	0.084	0.098	0.152	0.079	0.073	0.080	0.061	0.068	0.075	/ SmM		ion			
0.04	0.	0.	0.110 0.111	0.078	0.075	0.188	0.101	0.202	0.096	0.076	0.079	0.082	0.144	0.086	10mM	Peroxidase activity				
0.04893	0.02	0.03	0.111	0.078	0.075	0.153	0.131	0.210	0.133	0.055	0.149	0.054	0.106	0.080	20mM	se activit				
				0.0780 0.216	0.075 0.0750 0.176 0.176 0.176	0.153 0.1417 0.248 0.173 0.178 0.1997	0.131 0.1100 0.373 0.600 0.432	0.210 0.1880 0.132	0.133 0.1027 0.481 0.413	0.0680 0.164	0.149 0.1027 0.122	0.054 0.0657 0.215 0.300 0.163 0.2260	0.106 0.1060 0.296 0.245 0.057 0.1993	0.080 0.0803 0.137 0.146	Меап	¥				
0.04614			0.233	0.216	0.176	0.248	0.373	0.132	0.481	0.164	0.122	0.215	0.296	0.137	5mM	Poly				
	0.01	0.	0.233 0.272	0.216	0.176	0.173	0.600	0.445	0.413	0.094	0.183	0.300	0.245		10mM	Polyphenol oxidase activity				
614	01	0.03	0.276	0.216		0.178	0.432	0.541	0.515	0.156	0.281	0.163	0.057	0.322 0.2017	20mM	idase act				
				0.2160	0.1760	0.1997	0.4683	0.3727	0.4697	0.1380	0.1953	0.2260	0.1993	0.2017	Mean	ivity				
			0.682	0.11	0.15	1.26	0.15	0.86	0.82	2.16	0.03	0.24	0.03	1.69	5mM					
0.24	0	0.	0	0.	0.14	1.144	0.11	0.15	0.81	0.07	1.08	1.39	3.05	2.12	0.59	0.09	3.12	10mM	Protein	
24	0.08	14	1.030	0.11	0.15	1.09	0.18	1.01	1.59	2.81	2.01	0.51	0.11	1.76	10mM 20mM	Protein content				
12 water	was er			0.11	0.15	1.05	0.13	0.98	1.27	2.67	1.39	0.45	0.078	2.19	Mean		<u> </u>			

^{*} Activities expressed as change in absorbance/ 5 min./g fresh weight

^{**}BVA = Bovine Serum Albumin.

^{***} Concentrations of KH2PO4 were 50, 100 & 200mM.

(1984) who reported that, injection of cucumber cotyledons with salicylic acid (SA) and other phenolic acids induced resistance to inoculations with Colletotrichum lagenarium when inoculation followed injection by 96 h but not 24h. Okuno et al. (1991) recorded that spraying cucumber leaves with salicylic acid (SA) reduced the diseased area caused by Pseudoperonospora cubensis by >50% in the sprayed 1st leaf and also in the upper 2nd leaf provided challenge inoculation was made 3-6 days but not 1-24h after treatment. Electrophoretic analysis of extracted proteins on polyacrylamide gel showed that both the SA treatment and localized infection with P. cubensis induced several novel acid soluble proteins in the treated and the upper untreated leaves in correlation with induced resistance. Feussner et al. (1997) investigated changes in lipoxygenase protein pattern and/or activity in relation to acquired resistance of cucumber leaves against 2 powdery mildews (Sphaerotheca fuliginea and Erysiphe cichoracearum).

On the contrary, the fungicide Penconazole, boric acid (BA) and oxalic acid (OA) at 5, 10 and 20mM, CaCl₂ and CoCl₂ (at 5mM), however, did not affect the total soluble protein content in tissues of the upper 4th squash leaf compared with control. It is well known that a variety of chemicals have been shown to induce systemic resistance and their action often involves signaling steps that are also required for the expression of systemic acquired resistance (Ward et al., 1991).

REFERENCES

- Ahmed, G. A. 2005. Using plant extracts to control powdery mildew disease that attack cucumber plants under protected houses. M.Sc. Thesis, Fac. of Agric. Moshtohor, Zagazig Univ. Benha Branch, pp. 169.
- Avdiushko, S.A.; Ye, X.S.; Hildebrand, D.F. and Kuć, J.A. 1993. Induction of lipoxygenase activity in immunized cucumber plants. Physiological and Molecular Plant Pathology, 42: 83-95.
- Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Annals of Biochemistry, 72: 248-254.
- Bray, H.G. and Thorpe, W.V. 1954. Analysis of phenolic compounds of interest in metabolism. Methods of chemical analysis, 1: 27-51.
- Chance, B. and Maehly, A.C. 1955. Assay of catalases and peroxidases. In: *Methods Enzymology*. Vol 2, (B. Chance, A. Maehly, ed.) 764-768, Academic Press, New York.
- Descalzo, R.C.; Rahe, J.E. and Mauza, B. 1990. Comparative efficacy of induced resistance for selected diseases of greenhouse cucumber. Canadian Journal of Plant Pathology, 12: 16-24.
- FAOStat Database 2003. Food and Agriculture Organization, United Nations. C.f. Economic Research Service, USDA, Vegetables and Melons Outlook/VGS-297/June 20, 2003.
- Feussner, I.; Fritz, I.G.; Hause, B.; Ullrich, W.R. and Wasternack, C. 1997. Induction of a new lipoxygenase form in cucumber leaves by salicytic acid or 2,6-dichloroisonicotinic acid. Botanica Acta, 110: 101-108 (Abstract).
- Frey, S. and Carver, T.L.W. 1998. Induction of systemic resistance in pea to pea powdery mildew by exogenous application of salicylic acid. Journal of Phytopathology, 146: 239-245
- Gamil, A.M. Nagwa 1995. Induced resistance in squash plants against powdery mildew by cobalt and phosphate sprays. Annals of Agricultural Science, Moshtohor, 33: 183-194.
- Gottstein, H.D. and Kuć, J.A. 1989. Induction of systemic resistance to anthracnose in cucumber by phosphates. Phytopathology, 79: 176-179.

- Li ShuJu; Ma DeHua; Pang JiNan and Huo ZhenRong 2000. Induced effect of salicylic acid on the activity of several enzymes and disease resistance of cucumber. Acta Agriculturae Boreali Sinica, 15: 118-122 (Abstract).
- McGrath, M.T. 1997. Powdery mildew of cucurbits. Department of Plant Pathology, Cornell University, Vegetable MD Online, Fact sheet page: 732.30
- Meena, B.; Marimuthu, T. and Velazhahan, R. 2001. Salicylic acid induces systemic resistance in groundnut against late leaf spot caused by *Cercosporidium personatum*. Journal of Mycology and Plant Pathology, 31: 139-145.
- Mills, P.R. and Wood, R.K.S. 1984. The effects of polyacrylic acid, acetylsalicylic acid and salicylic acid on resistance of cucumber to *Colletotrichum lagenarium*. Phytopathologische Zeitschrift, 111: 209-216. (Abstract).
- Mosa, A.A. 1997. Effect of foliar application of phosphates on cucumber powdery mildew. Annals of Agricultural Science (Cairo), 42: 241-255.
- Mosa, A.A. 2002. Management of sugar beet powdery mildew by foliar spraying of potassium phosphate salts. Arab Universities Journal of Agricultural Sciences, 10: 1043-1057
- Okuno, T.; Nakayama, M.; Okajima, N. and Furusawa, I. 1991. Systemic resistance to downy mildew and appearance of acid soluble proteins in cucumber leaves treated with biotic and abiotic inducers. Annals of the Phytopathological Society of Japan, 57: 203-211.
- Orober, M.; Siegrist, J. and Buchenauer, H. 1998. Induction of systemic acquired resistance in cucumber by foliar phosphate application. (Lyr, H.; Russell, P.E.; Dehne, H.W.; Sisler, H.D., ed.) Modern fungicides and antifungal compounds II. 12th International Reinhardsbrunn Symposium, Friedrichroda, Thuringia, Germany, 24th-29th May, 1998. pp. 339-348. (Abstract).
- Reuveni, M. and Reuveni R. 1995. Efficacy of foliar sprays of phosphates in controlling powdery mildews in field-grown nectarine, mango trees and grapevines. Crop Protection, 14: 311-314.
- Reuveni, M.; Agapov, V. and Reuveni, R. 1997. A foliar spray of micronutrient solutions induces local and systemic protection against powdery mildew (*Sphaerotheca fuliginea*) in cucumber plants. European Journal of Plant Pathology, 103: 581-588.
- Reuveni, R.; Dor, G. and Reuveni, M. 1998. Local and systemic control of powdery mildew (*Leveillula taurica*) on pepper plants by foliar spray of mono-potassium phosphate. Crop Protection, 17: 703-709.
- Strobel, N.E. and Kuć, J.A. 1995. Chemical and biological inducers for systemic resistance to pathogens protect cucumber and tobacco plants from damage caused by paraquat and cupric chloride. Phytopathology, 85: 1306-10.
- Taneja, S.R. and Sachar, R.C. 1974. Induction of polyphenolo-xidase in germinating wheat seeds. Phytochemistry, 13: 2695-2702.
- **Thomas, W. and Dutcher, R.A. 1924.** The colorimetric determination of carbohydrates in plants by the picric acid reduction method. 1. The estimation of reducing sugars and sucrose. Journal of American Chemical Society, 46: 1662-9.
- Tuzun, S.; Rao, M.N.; Vogeli, U.; Schardl, C.L. and Kuć, J.A. 1989. Induced systemic resistance to blue mold: early induction and accumulation of β -1,3-gluconases, chitinases, and other pathogenisis-related proteins (b-proteins) in immunized tobacco. Phytopathology, 79: 979-983.
- Ward, E.R.; Uknes, S.J.; Williams, S.C.; Dincher, S.S.; Wiederhold, D.L.; Alexander, D.C.; Ahl Goy, P.; Métraux, J.P. and Ryals, J.A. 1991. Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell, 3: 1085-1094.

التغيرات البيوكيميائية في أوراق الكوسة المرشوشة ببعض الكيماويات الستحثاث المقاومة للبياض الدقيقي نوال عبد المنعم عيسى ، عبد المنعم إبراهيم الفقي ، فتحي جاد محمد ، محمد حامد الهبّاق قسم النبات الزراعي – كلية الزراعة – جامعة بنها

في هذه الدراسة تم اختبار الرش الورقي بتسع مركبات كيميائية هي حامض الأسكوربيك، حامض البوريك، كلوريد الكالسيوم، كلوريد الكوبلت، كبريتات النحاس، كبريتات المنجنيز، حامض الأوكساليك، فوسفات البوتاسيوم ثنائية الهيدروجين، و حامض السالسيليك بالنسبة لقدرتها على استحثاث المقاومة لفطر "سفيروئيكا فيوايجينيا" مسبب البياض الدقيقي على نباتات الكوسة المنزرعة تحت الصوبة الزجاجية.

تم رش بادرات الكوسة في عمر أول ورقتين حقيقيتين بالمركبات المختبرة (باستخدام ثلاثة تركيزات منتابعة من كل منها) مع الرش بالمطهر الفطري "بنكونازول" الفعال في مقاومة المرض بتركيز ٢٥ جزء في المليون على سبيل المقارنة. تم تقدير شدة المرض في عمر الورقة الحقيقية الخامسة.

أوضحت النتائج أن جميع المركبات المختبرة - فيما عدا كلوريد الكالسيوم - كانت فعالة في استحثاث الوقاية الجهازية للبياض الدقيقي، إلا أن معظمها كان أقل فعالية في مقاومة المرض عن المطهر الفطري "بنكونازول" الذي وفر وقاية جهازية قدرها ١٠٠% على الأوراق العليا مثله في ذلك مثل المعاملة بكبريتات المنجنيز ٢٠ مللي مولر.

تم دراسة بعض التغيرات البيوكيميائية في الأوراق الناتجة بعد المعاملة في إطار تحديد جزء من الميكانيكيات التي من خلالها تقوم عملية الاستحثاث بتوفير الحماية من مرض البياض الدقيقي. وجد أن ستة من المركبات المختبرة سببت زيادة معنوية في محتوى السكريات الكلية في الأوراق بينما قالمت جميعها من محتوى الفينولات الكلية مقارنة بالكنترول. أظهرت المعاملة بكل من كبريتات المنجنيز، وحامض السالسيليك، وحامض الأوكساليك، وحامض البوريك زيادة واضحة في نشاط إنزيم البيروكسيديز. بينما تأثر نشاط إنزيم البولي فينول أوكسيديز بمعاملات كبريتات المنجنيز، وفوسفات البوتاسيوم الأحادية تأثيرا إيجابيا عاليا مقارنة بالكنترول. إضافة إلى ذلك وجد أن أغلب المركبات المختبرة سببت زيادة معنوية في محتوى الأوراق من البروتين الذائب الكلى